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Abstract

In this work we implement a method to rectify the dis-
tortion of a Rolling-Shutter camera and estimate its rela-
tive motion. A modified differential Structure-from-Motion
(SfM) algorithm proposed by Zhuang et al. [24] is used to
correct this distortion. We provide a detailed description
and present experimental results on both synthetic and real
world data. We show that the approach results in good rec-
tification given an accurate optical flow estimate.

1. Introduction

Many consumer-grade cameras (e.g. smartphone cam-
eras) are Rolling-Shutter (RS) cameras. In contrast to
Global-Shutter (GS) cameras, which read out all pixels
jointly, RS cameras capture the image line-by-line. This
reduces manufacturing cost significantly. However, com-
puter vision algorithms like epipolar geometry [10] and
SfM [7] assume a GS camera model. Therefore, their ac-
curacy might be reduced when using RS cameras due to the
so-called RS distortion: for a moving RS camera each scan-
line has its own optical center. Thus, the image is distorted.

In this work we implement a method proposed by
Zhuang et al. [24] to rectify the RS distortion and jointly es-
timate the camera’s motion. Using a suitable motion model
the need for additional parameters is eliminated. Assuming
a camera movement with constant velocity, the RS distor-
tion is rectified using a linear model applied on the optical
flow. Assuming a constant acceleration movement of the
camera, a 9-point algorithm is used to solve for the correc-
tion factors on the optical flow. In a nonlinear refinement
step the initial estimates are optimized. Then, we can back-
project the RS distorted frame to get the initial GS frame.
The overall idea of the method is depicted in figure 1.

The goal of this work is to verify the proposed method
and to provide a detailed description on how to implement
it. We made our implementation available on GitHub'.

Ihttps://github.com/ThomasZiegler/RS-aware-differential-SfM
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Figure 1. Overall procedure: Rectify RS distortion and estimate
camera motion based on optical flow between two RS frames. Due
to the RS distortion the tree trunk is slanted.

2. Related Work

The RS distortion problem in single and multi-view im-
ages is part of numerous studies. Saurer et al. [22] show
that large-scale SfM with RS images is possible.

However, it is challenging to estimate the camera trajec-
tory in RS SfM. Dai et al. [6] proposed a method using a
high number of image correspondences. This reduces the
practicability when using RANSAC. Other methods bypass
the initial relative pose estimation or simplify it. Hanning
et al. [9] and Karpenko et al. [13] correct the RS effect of
a smartphone video by using the integrated IMU to get a
camera trajectory estimate. Purkait and Zach [18] restrict
the possible camera trajectory by using a specific car mo-
tion model. Saurer et al. [21] optimize for the absolute pose
under the simplifying assumption of zero angular velocity.
Albl et al. [2] use a double linearized RS camera model
which requires a good initial estimate for the camera orien-
tation. Purkait et al. [19] and Lao et al. [14] leverage geo-
metric properties of the 3D scene in the images, in particular
vanishing directions and straightness constraints. Under the
assumption of a uniform camera velocity, Meilland et al.
[16] proposed a SfM algorithm jointly solving for the RS
distortion and motion blur using RGBD sensor data.



3. Method
3.1. Notation and motion model

We define X = [X,, X,, X,]T and x = [z, 2,,1]T as
world and image coordinates, respectively. The transforma-
tion between them is given by

Ax=RX+t=[R|¢][X[1] (1)

with A € R\{0} and R, t being a rotation matrix and trans-
lation vector, respectively.

As described by Murray et al. [17] the rigid motion of
the camera follows

d

%X =wXxX+V, 2)
where w = [wy,wy,w,]T € R? is the angular velocity and
v = [vg,vy,v,]T € R? the linear velocity of the camera.
The angular velocity can be mapped into a rotation matrix
via the the exponential map exp(.) : s0(3) — SO(3):

R =exp(w). 3)

Here, SO(3) is the so-called special orthogonal group and
50(3) the corresponding lie algebra [4]. It is also referred to
as the space of 3 x 3 skew symmetric matrices [17]. For a
vector p = [p1, 2, p3] T € R3, we define p € s0(3) as:

0 -—-p3 p2
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3.2. Differential SfM

As described by Jepson and Heeger [12], using the linear

velocity v and angular velocity w the optical flow u” of a

pixel x = [z (" 1]T can be expressed as
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To simplify the notation, in the following we drop the ()
index, if a formula only depends on a single pixel i.

Following the work of Ma et al. [15] we can use (5) to
rewrite the differential epipolar constraint as

u'vx+x'Sx=0 8)

with the symmetric matrix S = } (V& + @V). This equa-

tion yields a constraint for the image points which can be
used to solve for v and w.

3.3. RS-Aware-Differential SfM

Using a RS camera, each scanline of every frame has
its own pose. We assume the RS camera jointly scans the
pixels on the z-axis. Hence, each y-coordinate corresponds
to a scanline as illustrated in figure 2.
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Figure 2. Two consecutive frames taken with a RS camera. The
lines correspond to the scanlines, with the readout time marked in
blue.

Given two images and a 3D point mapped to image coor-
dinates x(*) in image 1 and xU) in image 2, the optical flow
isul® = [:cggj) — ng), :céj) — :cgf)]T. As shown by Zhuang et
al. [24], the relative translation t;; and rotation r;; between

the two scanlines 2 and 2’ can be written as

t,’j = B(Z)At, rij = IB(Z)AI‘ (9)

Here, At and Ar are the relative translation and rotation of
the camera between the first scanline of image 1 and image
2. The factor 5(*) depends on the displacement of the scan-
lines in the optigal flow, the readout time ratio v = T:CfTb
and an acceleration factor k.

3.3.1 Constant Velocity

Throughout this project two assumptions for the camera
movement are made. First, a camera motion with constant
velocity between two frames is assumed. The factor 5(*) is
then equal to

o =14 J(a) — ), (10)

where h relates to the number of scanlines in an image.

3.3.2 Constant Acceleration

For the second case, a camera motion with constant accel-
eration between two frames is assumed. This introduces an
additional parameter, namely the acceleration factor k. The
factor 5() can then be found as:

BD (k) = (a“) + ka@) g%k 11
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For k=0 the constant acceleration case reduces to the con-
stant velocity case. Thus, the algorithms are described for
the constant acceleration case in the following.

3.3.3 RS Differential Epipolar Constraint

By assuming a small motion between two images, the ve-
locities v and w can be used as an approximation for the
displacement At and Ar. Thus, the factor 5 can be used to
correct (5), leading to

uzﬁ(Av—i—Bw). (13)

Here, v and w describe the relative pose between the first
scanlines of the two RS frames. Furthermore, the differ-
ential epipolar constraint (8) can be corrected for the RS
distortion, resulting in

u'vx + Bx"Sx = 0. (14)

3.4. Rectification

Let (t14,11;) be the relative poses between the first and
the i-th scanline within the same image. With w, v and the
correct depth values, it is possible to retrieve the relative
camera poses for each scanline as shown by Zhuang et al.
[24]. Using the first scanline of the first RS image as the
origin, the relative poses can be derived as:
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ry; = . + 5 ( A ) w. (16)

The pose of the i-th scanline is t; = t1; and R; = exp(f1;).
With the known poses and (1) it is possible to backproject
each pixel of the first RS frame into the 3D world. Using
the same equation one can backproject each 3D point into
the image plane assuming the pose corresponding to the first
scanline. Since only the first scanline pose is used, this re-
sult approximates a GS image.

4. Implementation

The pipeline is implemented using C++, Eigen [8] and
OpenCV [5]. The work was distributed as follows:

Manuel Fritsche implemented RANSAC and the Mini-
mal Solver, including the implementation of the approach
presented by Ma et al. [15] and the derivations in section
4.3.

Felix Graule generated both synthetic and real world
data. Furthermore, he took care of the Optical Flow cal-
culation for real world data using DeepFlow [23].

Thomas Ziegler implemented the Depth Estimation, the
Nonlinear Refinement and the Image Rectifier. He also
worked out how to calculate the Optical Flow on synthetic
data.

4.1. Pipeline

The algorithm consists of several steps executed sequen-
tially as shown in figure 3. In the following sections each of
the steps is described in more detail.

Minimal Solver

Two Optical
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images Flow

Nonlinear Image
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Figure 3. Each box marks a step in the pipeline. The Minimal
Solver and the Depth Estimator are executed multiple times within
RANSAC.

4.2. Optical Flow

The input consists of two consecutive images that were
taken by a rolling-shutter camera. Retrieving the optical
flow is done by two separate methods. In the case of syn-
thetic images (section 5.1) we use the information provided
by the renderer to calculate the exact ground truth flow. For
real world images (section 5.2) this is not possible. Instead,
the pipeline uses the optical flow implementation DeepFlow
[23] as described in section 4.2.2.

4.2.1 Ground Truth Flow

For each pixel the renderer provides the corresponding 3D
point in the world frame. One can project the 3D points
from the first RS image into the second RS image using (1).
However, as described in section 3.3 each scanline has its
own pose. Hence, one does not know beforehand in which
x, coordinate the point is projected. Thus, we do not know
which scanline pose to use upfront. We therefore calcu-
late the corresponding image coordinates using all scanline
poses. From all possible solutions we choose the one with
the smallest deviation between x, and the corresponding
scanline.

4.2.2 DeepFlow

DeepFlow [23] allows to robustly estimate the optical flow
between two frames even for large displacements. It uses
a multi-layer neural network tailored to recognize optical
flow. DeepFlow is implemented in OpenCV’s extra mod-
ules in the class optflow. The implementation is fully pre-
configured and thus easy-to-use as no parameter-tuning is
needed.

4.3. Minimal Solver

The Minimal Solver gets the optical flow as its input and
uses the differential epipolar constraint in (14) to estimate



v,w and k. There are 9 unknowns in this equation:

S1 82 83
(Vo +@wv)=|s2 sS4 S5
P 83 S5 Se
a7
Using 9 image relations from the optical flow, a 9x9 matrix
Z(k) is built from the epipolar constraint in (14), where

Z(k)e = 0. (18)
The 9x 1 vector e contains all unknowns in the constraint:
e = [vg, Uy, Vs, S1, S2, S3, S4, 85,86]T. (19)

By using (14), Z(k) can be found as:
Z(k) = 21,22, - ,20] " (20)
@ G )] )
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As mentioned before, k is equal to 0 in the constant ve-
locity case. Thus, 3(V(0) = a is just a constant which
can be absorbed in the optical flow u. However, in the con-
stant acceleration case the acceleration factor £ has to be
estimated. Using the fact that (18) only has non-trivial so-
lutions if Z(k) is rank deficient, k can be estimated from

det(Z(k)) = 0. 22)

This yields a polynomial, which Zhuang et al. [24] suggest
to solve directly. However, this requires to solve (22) sym-
bolically, which is non-trivial. Thus, we propose an alterna-
tive solution using eigenvalues in the following. The matrix
Z(k) can be decomposed into 3 x 3 block matrices of size
3x3:

A B(k) C(k)
Z(k)= |D E(k) F)|. (23)
G H(k) Ik

We can then rewrite (22) as:

det(Z(k)) = det(A) det (M(k)) =0 (24)

with
M(k) — E(k) —DA'B(k) F(k) - DA-'C(k)
(k) H(k) - GA™'B(k) J(k) — GA~1C(k)
(25)

Now every entry in M (k) depends on a linear combination

of 8 (k) = (o + k&) g% for different . This allows
the following decomposmon of M(k):
M(k) = (P + kQ)—— F (26)
2+ kK

where P and Q are not dependent on k.
Now for k #£ 0, k # —2 and an invertible matrix Q, we
can rewrite (22) as:

det(P + kQ) = det(—Q) det(—Q~'P — kI) = 0. (27)
Thus, the k values that solve (27) are the eigenvalues of
—Q~'P. From the multiple k values returned, the one with
the smallest absolute value is used. We pick this value to
favor small accelerations.

After k is estimated, 3(?) (k) is treated as a constant fac-
tor, equivalent to the constant velocity case. It can then be
absorbed in the optical flow, which allows us to estimate the
velocities v and w with the 9-point algorithm described by
Ma et al. [15].

4.4. Depth Estimation

The Minimal Solver provides an initial estimate of v and
w. Depth Estimation is done by solving for the optimal
depth value X ;Z) for each pixel . Using (13) we get the
following optimization

2
2 }

arg min { Z
(28)

i€O
where Z = {Xgl)7 Xz(g), -+ } is the set of all depth values
and O the set of all pixels. The optimization is independent
for each pixel and can be done over the whole set at once
resulting in an algebraic minimum. We use Google Ceres
solver [1] to perform this optimization.

4.5. RANSAC

RANSAC is used to make the algorithm robust against
outliers. During each trial 9 image points are sampled with-
out replacement. On these the Minimal Solver is executed
to estimate v, w and k. Subsequently, the Depth Estimator
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calculates the depth values X z(f) of all image points, which
are then used to determine the inliers. The estimation error
of each point ¢ is defined using the optical flow and (13):
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4.6. Nonlinear Refinement

The result from RANSAC described in 4.5 provides an
algebraic minimum of (13). However, for a more accurate
solution the geometric reprojection error should be mini-
mized. This is done using

2
2 }

arg min { Z
(30)

k,v,w,Z icO

where O is the set of RANSAC inliers and Z the set of
corresponding depth values for a pixel in the set O. In con-
trast to (28) we not only optimize over the depth values but
also over all motion parameters. Note that v can only be
determined up to scale. Thus, X 9) can only be estimated
up to scale. We again use Google Ceres solver [1] for this
optimization.
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5. Experiments and Results
5.1. Synthetic Data Generation

We generated synthetic data using a 3D renderer for Mat-
lab [11] and the textured 3D model castle [20]. First, the
trajectory of the virtual camera is calculated using (9) lead-
ing to a tuple (R, t;) for every scanline. We then iteratively
render a GS image for every scanline pose, while only stor-
ing the horizontal line of the rendering corresponding to the
current scanline. Finally, all lines are fused together to form
one RS image. After moving the virtual camera to the next
initial position this procedure is repeated to get the second
RS image. Through this method we can fully control all
motion parameters, minimize the error induced by impre-
cise optical flow and compare the results to ground truth.

5.2. Real World Data Generation

Using real world data we show how our implementation
performs in practically relevant settings. The images were
captured using the rear camera of a Samsung Galaxy S8.
The camera was calibrated using the Single Camera Cali-
brator App in Matlab. Auto-focus was turned off to ensure
constant camera intrinsics in the videos. To achieve a sig-
nificant RS distortion a fast motion is required. Hence, we
recorded the test sequences from ETH’s shuttle buses.

5.3. Performance on Synthetic Data

The effectiveness of our pipeline can be seen in figure 4.
Looking at the edges marked by red lines, we see how the
previously slanted edges are corrected to be vertical. Com-
paring the overlay images we further see how the deviation
from ground truth (shown in blue) is much smaller after go-
ing through our pipeline. Most of the remaining deviation
is in areas which are not visible in the RS frame but in the
GS frame (e.g behind corners).

Overlay original RS vs.
ground truth GS image

Overlay rectified RS vs.
ground truth GS image

Figure 4. Results on synthetic data: examples of the RS distor-
tions and their rectifications are marked in red. The overlay im-
ages combine two images: the original GS image and the deviation
dyed in blue. The deviation is calculated as the difference between
the GS image and the original or rectified RS image respectively.

5.4. Parameter Sweeps on Synthetic Data

We compare the effect of certain model parameters with
and without refinement in the following evaluations. Each
plot shows the mean of 50 evaluations with 50 RANSAC
trials, using a threshold of 0.01 on the normalized image
plane. We avoid forward motion in all experiments since
it is well know that this is challenging for SfM, even for
traditional GS cameras. We evaluate the 3D error as av-
erage Euclidean distance 4 Zf\il HX](;S)t —X(GZ%
the estimated and ground truth (GT) 3D points.

In figure 5 (left) we show the effect of the acceleration
factor k. Assuming GS, we see an increasing error as k
rises. We further see how the constant velocity method can-
not account for the acceleration and shows an increasing er-
ror too. Finally, the error is constant assuming constant ac-
celeration, indicating the method successfully accounts for
the acceleration. Without refinement the standard deviation
is significantly higher when assuming constant acceleration
due to the additional estimation of the parameter k. Since
the GS error increases rapidly for k # 0, we use k = 0 for
the following evaluations. Looking at (26), we see that our
method can not be used in the constant acceleration case if
k=0. Thus, we do not plot these results.

In figure 5 (middle) we see the influence of the readout
time ratio «y as the RS effect becomes dominant (i.e. v —1).
Using the GS assumption the error increases, meaning the
RS distortion gets larger as + rises. In contrast, the error is
constant assuming constant velocity.

‘ between
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Acceleration factor k
y=0.8,v=[0.03,0.03,0], w=[0,0,0.5]

Readout time ratio y
k=0,v=[0.03,0.03,0],w=[0,0,0.5]

Linear velocity v
k=0,y=0.8,w=[0,0,0.5]
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Figure 5. Sweep over acceleration factor k, readout time ratio «y and linear velocity v. We plot the 3D error of 50 evaluations and the
standard deviation among the evaluations for a 600 x 600 synthetic images. The respective motion parameters are depicted in the plots.

Optical flow

‘ Original images ‘

Rectified image ‘

‘ RS-Aware depth map ‘ ‘

Figure 7. Result using two frames taken at ETH Ziirich: the RS distortion seen on the cricked building edges is successfully rectified.

In figure 5 (right) we show the 3D error for varying linear
velocities v. We can again see that the constant velocity
assumption has significantly less error than the GS case.

We further tested the method for different angular veloc-
ities w. However, for larger angular velocities the Minimal
Solver estimated a linear velocity with a high forward mo-
tion v, instead of the correct angular velocity (despite good
rectification). We assume this problem is partly caused by
the simplified motion model and the degeneracy of RS SfM
described by Albl et al. [3].

5.5. Performance on Real World Data

The results for real world images are shown in figure
6 and 7. Looking at the red lines we observe successful
rectification of the RS distortion. For the method to work
well, an accurate optical flow estimation is crucial. This
was achieved best for uniform translations in scenes with
clear and varying depth structure, few reflections and de-
scriptive texture. In figure 7 one can see that even if the
depth map is not perfect, the rectification still provides ac-
curate results. For full HD frames running on a Laptop,
the algorithm approximately requires the following compu-
tation times: flow estimate 30s, one RANSAC trial 20s and
final refinement 30s. This is nowhere close to real time,
limiting the possible applications.

6. Discussion

The experiments show that the accuracy of the method
depends on the specific motion of the camera and the scene.
As shown in section 5.4 and figure 5, the RS-aware ap-
proach can reduce the 3D error when using images from
RS cameras. However, the quality of the results strongly
depends on the quality of the optical flow. Since this re-
mains a challenging task, not every setting is suited for the
method described in this paper. Especially in scenes with
little texture (e.g. white walls) or with complex shapes (e.g.
trees), the optical flow fails to provide accurate results. Fur-
thermore, for strong camera rotations the relative pose esti-
mation is inaccurate.

For future work it would be interesting to extend the al-
gorithm to sequences of more than two frames. This could
be used for example to correct the RS effect in not only sin-
gle images, but whole videos.
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