
Vision for Robotics Lab
Prof. Dr. Margarita Chli

Semester Thesis

Supervised by: Author:
Marco Karrer Thomas Ziegler
Patrik Schmuck
Prof. Dr. Margarita Chli

High Accuracy Visual
Inertial SLAM for

Autonomous Navigation of
small UAVs

Spring Term 2018

Declaration of Originality

I hereby declare that the written work I have submitted entitled

High Accuracy Visual Inertial SLAM for Autonomous Navigation of
small UAVs

is original work which I alone have authored and which is written in my own words.1

Author(s)

Thomas Ziegler

Student supervisor(s)

Marco Karrer
Patrik Schmuck

Supervising lecturer

Margarita Chli

With the signature I declare that I have been informed regarding normal academic
citation rules and that I have read and understood the information on ’Citation eti-
quette’ (https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-
abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf). The
citation conventions usual to the discipline in question here have been respected.

The above written work may be tested electronically for plagiarism.

Place and date Signature

1Co-authored work: The signatures of all authors are required. Each signature attests to the
originality of the entire piece of written work in its final form.

https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf
https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf

Contents

Abstract v

1 Introduction 1

2 Related Work 3
2.1 A Benchmark Comparison . 3
2.2 MSCKF . 3
2.3 OKVIS . 3
2.4 ROVIO . 4
2.5 SVO+GTSAM . 4
2.6 VINS-Mono . 4
2.7 Summary . 4

3 System overview 5
3.1 Measurement Preprocessing . 5
3.2 Visual Inertial Odometry . 5

3.2.1 Optimization . 6
3.2.2 Marginalization . 6

3.3 Relocalization and Pose Graph Optimization 9
3.4 Implementation . 9

4 Evaluation 11
4.1 Metrics . 11

4.1.1 Accuracy . 11
4.1.2 Per-Frame Optimization Time 11

4.2 Implementation of the Schur Complement 12
4.3 Reducing the Number of Tracked Features 12
4.4 Changing the Sliding Window Size 13
4.5 Setting Features Constant in Optimization 14
4.6 Not adding Features of the oldest Keyframes to the Bundle Adjustment 16
4.7 Removing Features from the Bundle Adjustment 17
4.8 Skipping Marginalization . 18
4.9 Removing Features from Marginalization 18
4.10 Conclusion . 20

5 Approach 21

6 Experimental Results 23
6.1 Experimental Settings . 23

6.1.1 First Experiment . 23
6.1.2 Second Experiment . 23

6.2 Experiments . 24
6.2.1 First Experiment . 24

ii

6.2.2 Second Experiment . 24
6.3 Results . 24

6.3.1 First Experiment . 24
6.3.2 Second Experiment . 26

7 Conclusion and Outlook 29
7.1 Conclusion . 29
7.2 Outlook . 30

Bibliography 32

Abstract

Unmanned Aerial Vehicles (UAVs) require accurate pose estimates with low la-
tency in order to achieve a robust and stable flight behavior. However, due to
the power and payload restrictions of aerial platforms, state estimation algorithms
must provide these qualities under computational constraints. Monocular Visual
Inertial Odometry (VIO) systems, consisting of a camera and an Inertial Measure-
ment Unit (IMU), can satisfy these constraints and form the minimum sensor suite
for metric 6 Degree of Freedom (DoF) pose estimation.

In this work, we propose an accurate keyframe based monocular VIO pipeline for
onboard state estimation of UAVs. The publicly available Visual Inertial (VI)
Simultaneous Localization and Mapping (SLAM) system VINS-Mono is therefore
adapted. The performance of the VIO pipeline is evaluated for different param-
eter settings. Based on these evaluations, we propose a VIO pipeline running in
real-time while only exhibiting a little loss in accuracy compared to the default
implementation of VINS-Mono.

The proposed VIO pipeline is extensively tested on all sequences of the EuRoC
dataset. Furthermore, the real-time applicability is confirmed by deploying and
running the VIO pipeline on a real UAV.

v

Acronyms

Acronyms and Abbreviations

ASL Autonomous System Lab

BA Bundle Adjustment

EKF Extended Kalman Filter

DoF Degree of Freedom

IMU Inertial Measurement Unit

MSF Multi Sensor Fusion

ROS Robot Operating System

SfM Structure from Motion

SLAM Simultaneous Localization and Mapping

UAV Unmanned Aerial Vehicle

VI Visual Inertial

VIO Visual Inertial Odometry

VO Visual Odometry

vii

Chapter 1

Introduction

Simultaneous Localization and Mapping (SLAM) is the task of navigating in a pre-
viously unknown environment by building a map of the environment which the
robot is in and simultaneously estimating its position within this map.

SLAM systems can usually be divided into two basic components, the front-end
and the back-end. The front-end builds a local map and estimates the robot’s pose
incrementally within this local map. Small deviations are accumulated over time
which results in a drift of the estimated pose. If a previously visited location is
detected, the back-end can correct for the drift with the help of loop closures and
pose graph optimization. Although, a globally topologically consistent map can
be achieved this way, the accumulated error cannot be removed completely. This
means, the accuracy of the front-end is fundamental for the overall performance of
a SLAM system.

Cameras are now easily found in many consumer electronic products. This makes
systems using a single camera very appealing due to their small size and low power
consumption. Furthermore, cameras can operate under different light conditions,
both indoors and outdoors. Hence, monocular front-end systems have become very
popular in recent years. However, it is known that a visual only front-end, imple-
mented as monocular Visual Odometry (VO) system, cannot retrieve the scale of a
scene. A popular solution for this problem is the integration of an IMU. The rich
representation of a scene captured with a camera, together with the accurate short-
term movement estimates by the IMU have been acknowledged to complement each
other well.

The performance of VIO system is often evaluated using UAVs. Due to their fast
dynamics and 6 DoF movements, they represent the most challenging type of robot.
However, UAVs normally have high power and payload constraints and the state
estimation must work on embedded hardware with limited computational resources.

Monocular SLAM or VIO solutions are either filter-based (e.g. using an Extended
Kalman Filter (EKF)) or optimization based using keyframes. It has been shown [1]
that keyframe based methods outperform filter-based ones, given enough computa-
tional power. Hence, most new releases of monocular SLAM systems are keyframe
based. Keyframes provide the additional advantage that they can be used by si-
multaneously running algorithms at the same time. Keyframes can for example be
exchanged between two robots to perform collaborative SLAM [2], [3] or keyframes
can be used for path planning tasks [4]. Running other tasks simultaneously beside
the SLAM system increases the computational payload significantly, reducing the

1

Chapter 1. Introduction 2

available computational resources dedicated for the SLAM task.

This work proposes an accurate keyframe based monocular VIO system for com-
putationally restricted platforms. The systems builds on an existing open-source
VIO implementation VINS-Mono [5]. The impact of the different parameter set-
tings in the initial implementation of VINS-Mono are analyzed on a UP Board, a
single board computer. Based on this evaluation an adaption is proposed in order
to achieve an implementation with real-time performance. The resulting system is
extensively tested on all sequences of the EuRoC micro aerial vehicle dataset [6].
Furthermore, the system is deployed on a real UAV to ensure its functionality.

Chapter 2

Related Work

There exists extensive research on vision-based odometry/SLAM systems. However,
in this chapter we skip a full discussion on the available literature and focus only on
work that this semester project relies on. In particular, a benchmark comparison
of different VIO systems and a brief discussion on the publicly available VIO and
VI-SLAM systems. The chapter ends with a short comparison of the suitability of
these systems regarding the goals of this work.

2.1 A Benchmark Comparison

In [7], an extensive comparison of publicly available VIO pipelines (MSCKF, OKVIS,
ROVIO, VINS-Mono, SVO+MSF, and SVO+GTSAM) is performed with respect
to the per-frame processing time, CPU and memory load. The algorithms are eval-
uated on all sequences of the EuRoC datasets while processed on different single
board computer systems. The results are presented as a benchmark.

2.2 MSCKF

The Multi-State constraint Kalman Filter (MSCKF) [8] is a popular EKF based
VIO system. It maintains several previous camera poses in the state vector and
uses geometric constraint between all the poses that observe a particular feature as
update. There exist a publicly available implementations of this algorithm1.

2.3 OKVIS

Open Keyframe-based Visual-Inertial SLAM (OKVIS) [9] is a state-of-the-art SLAM
system that works with monocular and stereo cameras. However, it should be noted
that it is not optimized for monocular VIO and its performance is superior in the
stereo setup. It utilizes non-linear Bundle Adjustment (BA) optimization with a
sliding window of keyframe poses. Keyframes older than the sliding window are
marginalized out in order to retrieve the constraints. The source code of a Robot
Operating System (ROS) implementation has been made publicly available2.

1https://github.com/daniilidis-group/msckf mono
2https://github.com/ethz-asl/okvis ros

3

Chapter 2. Related Work 4

2.4 ROVIO

Robust Visual Inertial Odometry (ROVIO) [10] is a visual-inertial estimator based
on an EKF. ThisVIO system uses the photometric error of tracked image patches
to find the optimal state in the update step. The framework is specifically designed
for monocular systems and does not require any special initialization procedure.
The source code of a ROS implementation has been made publicly available3.

2.5 SVO+GTSAM

Semi-Direct Monocular Visual Odometry (SVO) [11] is a computationally lightweight
VO algorithm which employs sparse image alignment to estimate motion. It tracks
features by minimizing the photometric error of image patches around the features
between subsequent frames. The tracking is tightly coupled with an online fac-
tor graph optimization based on iSAM2 [12] for the state estimation of selected
keyframes. The IMU measurements between two consecutive keyframes are pre-
integrated as described in [13] in order to be used in the optimization. Both com-
ponents SVO4, and iSAM2 implemented in the GTSAM 4.0 optimization toolbox5

[14], are publicly available. However, the integration of these two systems is not
published and SVO is only provided as binaries.

2.6 VINS-Mono

VINS-Mono, presented in [5] is a complete VI-SLAM system. It uses non-linear
BA optimization over a sliding window for the pose estimation. Robust corner
features are tracked over consecutive frames. Similar to OKVIS, the optimization is
performed over keyframes, which are marginalized out when they leave the window.
Similar to SVO, the IMU measurements between consecutive keyframes are pre-
integrated to reduce the computational demand. VINS-Mono also provides a tightly
integrated relocalization. Together with the 4 DoF pose graph optimization it builds
the back-end of the SLAM system. The source code is available as a ROS compatible
implementation6.

2.7 Summary

As stated in the introduction, in chapter 1, the goal of this work is to implement a
low demanding monocular keyframe based VIO system. From the above mentioned
systems MSCKF and ROVIO are both filter based and do not have a keyframe
selection. SVO+GTSAM requires the source code to implement the tightly cou-
pled system. The source code of SVO is only available in the initial version, which
does not support front-looking cameras. The remaining systems are OKVIS and
VINS-Mono. OKVIS is optimized for stereo cameras and has to re-integrate the
IMU measurements in every optimization step, leading to computational overhead.
VINS-Mono, on the other hand, is designed for a monocular setup and does sup-
port pre-integration of the IMU measurements in order to avoid repeated IMU
re-integration. We therefore decided to use VINS-Mono as basis for this work.

3https://github.com/ethz-asl/rovio
4http://rpg.ifi.uzh.ch/svo2.html
5https://bitbucket.org/gtborg/gtsam/
6https://github.com/HKUST-Aerial-Robotics/VINS-Mono

Chapter 3

System overview

This chapter provides an overview of the VINS-Mono SLAM system proposed by
[5] as visualized in Figure 3.1. The focus lies on the parts of the system which
are crucial for this work whereas the rest is only described briefly. For a detailed
description of the system we refer to [5].

Figure 3.1: VINS-Mono SLAM system overview. Shown are the preprocessing module on
the left side, the front-end in the middle and the back-end on the right side.

3.1 Measurement Preprocessing

In the preprocessing step (left side in Figure 3.1), features in the frames are extracted
and tracked over consecutive frames using the KLT sparse optical flow algorithm
[15]. To maintain a minimum number of features in each image, additional corner
features are detected. Keyframes are also selected in the preprocessing step. The
current frame is selected as keyframe if one of the following two criteria is fulfilled:

1. The average parallax apart from the previous keyframe is beyond a certain
threshold.

2. The number of tracked features goes below a certain threshold.

The IMU measurements between two consecutive frames are pre-integrated includ-
ing bias correction as proposed in [13].

3.2 Visual Inertial Odometry

For a robust and accurate state estimation a tightly-coupled monocular VIO pipeline
is used (middle part in Figure 3.1). It performs a non-linear BA optimization
followed by a marginalization.

5

Chapter 3. System overview 6

3.2.1 Optimization

In order to bound the computational complexity, the optimization is performed in a
sliding window manner. The optimization is a visual-inertial BA. The sum of prior
and the Mahalonobis norm of all measurement residuals is minimized over the full
state vector X to obtain a maximum posteriori estimation:

min
X

‖rp −HpX‖2 +
∑
k∈B

∥∥∥rB (ẑbkbk+1
,X
)∥∥∥2

P
bk
bk+1

+
∑

(l,j)∈C

ρ

(∥∥∥rC (ẑ
cj
l+
,X
)∥∥∥2

P
cj
l

) ,

(3.1)

where ρ is the Huber norm. rB

(
ẑbkbk+1

,X
)

and rC

(
ẑ
cj
l+
,X
)

are the residuals for

the IMU and the visual measurements, respectively. The IMU residual consists of
constraints on the poses, the velocity, and the orientation of the IMU between two
consecutive (key-)frames in the sliding window. The IMU residual also contains
the acceleration and gyroscope bias. The visual measurement residual consist of
constraints on the poses and the orientation of the (key-)frames and the features
observed in these frames. A detailed description of the residuals can be found in [5].
{rp,Hp} is the prior information retrieved from the marginalization described in
subsection 3.2.2. It contains constraints on the pre-integrated IMU factor between
the marginalized and the subsequent keyframe and on the features observed in the
marginalized keyframe.

The BA optimization is performed over a sliding window, containing the latest two
frames, a new arriving frame, and the eight previous keyframes. An illustration of
the sliding window is shown in Figure 3.2, with the corresponding graph represen-
tation in Figure 3.3a.

Figure 3.2: Representation of the sliding window. The eight previous keyframes are marked
in blue with the oldest one most left. The latest two frames in the window and a new
arriving frame, illustrated on the right most side, are marked in orange.

3.2.2 Marginalization

There are two possible cases after the BA optimization. If the second latest frame is
not a keyframe, only the IMU measurements are kept and the visual measurements
are dropped, as shown in Figure 3.3. In case the second latest frame is a keyframe,
it will stay in the window and the oldest keyframe is marginalized, as shown in Fig-
ure 3.4. The marginalization is performed in order to preserve constraints between
the IMU state and the features observed in the oldest keyframe.

The marginalization is carried out using the Schur complement [16]. A new prior
related to the removed state is constructed and added to the existing prior in Equa-
tion (3.1).

7 3.2. Visual Inertial Odometry

(a) Graph of the state variables and measurements the BA optimization is performed on.

(b) Graph of the state variables and measurements after the BA optimization. If the second
latest frame is not a keyframe, it is removed together with its corresponding visual mea-
surements. The pre-integrated IMU measurements are combined into one measurement·

(c) Graph of the state variables and measurements, after the BA optimization and
marginalization, before a new frame arrives and the BA optimization is performed.

Figure 3.3: An illustration of the marginalization strategy (a)-(c) if the second latest frame
is not a keyframe. Blue triangles mark the keyframe poses and orange triangles mark
the latest two frame poses and the pose of the new arriving frame. The stars represent
landmarks that are observed within the (key-)frames. The green squares represent the pre-
integrated IMU measurements.

Schur Complement

Marginalization out parameters of a linear system matrix is equivalent to apply-
ing the Schur complement on this linear system matrix, as explained in [16]. For
example, given the system [

Λa Λb

Λ>b Λc

] [
δxa

δxb

]
=

[
ga

gb

]
. (3.2)

reducing the parameters xa onto the parameters xb leads to[
Λa Λb

0 Λc −Λ>b Λ−1a Λb

] [
δxa

δxb

]
=

[
ga

gb −Λ>b Λ−1a ga

]
. (3.3)

Chapter 3. System overview 8

(a) Graph of the state variables and measurements the BA optimization is performed on.

(b) Graph of the state variables and measurements after the BA optimization. If the second
latest frame is a keyframe, it is kept in the window, and the oldest keyframe and its corre-
sponding visual and IMU measurements are marginalized out. Marginalized measurements
are turned into a prior.

(c) Graph of the state variables and measurements, after the BA optimization and
marginalization, before a new frame arrives and the BA optimization is performed.

Figure 3.4: An illustration of the marginalization strategy (a)-(c)if the second latest frame
is a keyframe. Blue triangles mark the keyframe poses and orange triangles mark the latest
two frame poses and the pose of the new arriving frame. The stars represent landmarks
that are observed within the (key-)frames. The green squares represent the pre-integrated
IMU measurements.

After this forward substitution step, the smaller lower-right system is independent
of xa and can be solved to update xb:[

Λc −Λ>b Λ−1a Λb

]
[δxb] =

[
gb −Λ>b Λ−1a ga

]
. (3.4)

In our case, the pose estimation problem can be described as a 2×2 system of
equations (for simplicity the IMU states are included in the pose states):[

Λm Λmp

Λ>mp Λp

] [
δxm

δxp

]
=

[
gm

gp

]
. (3.5)

Where xm and xp are composed of the observed 3D landmarks and the robot poses,
respectively. The system matrix contains the “pose block” Λp, the “map block”

9 3.3. Relocalization and Pose Graph Optimization

Λm, and the “observation block” Λmp. On the right-hand side of Equation (3.5),
gm and gp are the vectors corresponding to the robot path and the map, respec-
tively.

This system has the same structure as Equation (3.2) and therefore marginalization
can be performed via Schur complement.

3.3 Relocalization and Pose Graph Optimization

The backend of the SLAM system (right side in Figure 3.1) consist of a loop closure
and pose graph optimization. Thanks to the addition of IMU, drift only occurs in 4
DoF (the global 3D position (x, y, z) and the rotation around the gravity direction),
as described in [5]. To eliminate these drifts, VINS-Mono provides a tightly-coupled
relocalization module which is seamlessly integrated with the monocular VIO.

After relocalization, the local sliding window is aligned with the past poses. The
pose graph optimization module uses these relocalization results to perform a 4 DoF
optimization to ensure the set of past poses is registered into a globally consistent
configuration.

In order to reduce the computational demand of the overall system, the loop closure
and pose graph optimization is deactivated for this work.

3.4 Implementation

The optimization Equation (3.1) is implemented using Google’s ceres solver [17].
The default settings regarding the parameters of the feature tracker and the opti-
mization are the following:

• Maximum number of tracked features throughout the keyframes in the sliding
window: 150 features.

• Maximum number of solver iterations: 8 iterations.

• Maximal solving time: 40 milliseconds.

The two break conditions of the optimization ensure real-time performance of the
optimization step irrespective of convergence. However, the followed marginaliza-
tion step is not guaranteed to be performed before the next frame arrives, prohibit-
ing real-time performance. Hence, if the overall optimization time (optimization
and marginalization) between two consecutive frames has to be reduced, one needs
to focus on the marginalization.

Chapter 3. System overview 10

Chapter 4

Evaluation

In this chapter, different adaptions of the implementation of Equation (3.1) are
made. Their effect on time and accuracy is analyzed on the MH3 sequence of
the EuRoC micro aerial vehicle dataset [6]. This dataset provides stereo WVGA
monochrome images at 20Hz and temporally synchronized IMU measurements at
200Hz. A ground truth trajectory is given by a Leica MS50 laser tracker. Only
the left camera is used in this evaluation. The adaptions are analyzed on a UP
Board with an Intel Atom x5-Z8350 CPU running at up to 1.92 GHz and compared
to the default VINS-Mono settings running on a Laptop with an Intel i7-6600U
CPU running at up to 3.4 GHz. If not stated differently, the default parameters
as described in section 3.4 are used. The evaluation focuses on two metrics, the
accuracy and the per-frame optimization time.

4.1 Metrics

4.1.1 Accuracy

The accuracy is measured with the translation error. We are most interested in
the local accuracy of the VIO. Therefore, the accuracy is measured by averaging
the drift over short trajectory segments of different length. The first 25 poses of
the estimated trajectory are aligned with the corresponding ground truth poses
using the sim3 trajectory alignment proposed in [18]. The translation error is then
measured as the Euclidean norm at the last pose of the trajectory segment. The
initial pose is then moved by five poses and the alignment and error calculation is
repeated. This metric is performed for trajectory segments of length 1m, 2m, 5m,
10m, 15m, 20m, 25m, and 30m. The rotation error around the gravity axis is not
measured separately. Drift in the yaw-axis will implicitly create drift in the x and
y axis which hence is covered with the translation error.

4.1.2 Per-Frame Optimization Time

The time spent for the optimization is crucial to ensure real-time performance. As
described in section 3.4 VINS-Mono works with a refresh rate of 10Hz. This im-
plies that the per-frame optimization should be performed within 100 milliseconds.
Hence, the time used for the whole optimization including marginalization is mea-
sured. The marginalization has the most influence on the overall time, since the
solving time of the non-linear BA optimization is limited as described in section 3.4.

11

Chapter 4. Evaluation 12

4.2 Implementation of the Schur Complement

All the evaluations discussed below are performed after an important change in the
implementation of the Schur complement. Meticulous timing analysis on the UP
Board has shown that the following two lines of C++ code required abnormally
high computation time.

A = A rr − A rm ∗ A mm inv ∗ A mr ;
b = b r r − A rm ∗ A mm inv ∗ b mm;

Where “A’s” are matrices and “b’s” are vectors corresponding to the left-hand and
right-hand side of Equation (3.4). The redundant matrix multiplication was moved
into a temporary variable, leading to the following code:

A tmp = A rm ∗ A mm inv ;
A = A rr − A tmp ∗ A mr ;
b = b r r − A tmp ∗ b mm;

This reduced the computation time of this operation to a reasonable value. However,
this was not further investigated since this phenomenon was limited to the UP Board
and the goal of this work is not specifically designed for the UP Board.

4.3 Reducing the Number of Tracked Features

As described in section 3.1 the preprocessing performs a feature tracking over con-
secutive frames. The default number of tracked features is 150. In this section, the
influence of the number of tracked features is analyzed. Reducing the number of
tracked features results in a lower dimension of the system matrix in Equation (3.5).
This leads to a lower number of features to be marginalized. The reduced optimiza-
tion time can be seen in Figure 4.1. In Figure 4.2 one can see how the accuracy
decreases noticeable with less tracked features, as shown in. Hence, simply reduc-
ing the tracked feature until real-time performance is reached is not a satisfactory
solution.

Figure 4.1: Boxplot summarizing the whole optimization time (optimization and marginal-
ization) for the VIO pipeline when changing the number of tracked features over consecutive
frames. The analyzed number of tracked features are {150, 125, 100, 75}. The first number
is the default setting and is evaluated on a Laptop and on a UP Board, all other numbers
are evaluated on a UP Board. The average numbers of solver iterations for the five different
cases are {6.00, 2.06, 2.25, 2.74, 3.05} iterations.

13 4.4. Changing the Sliding Window Size

1 2 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ra

n
s
la

ti
o

n
 E

rr
o

r
[m

]

Trajectory Length [m]

Laptop: default 150F

UP: default 150F

UP: 125F

UP: 100F

UP: 75F

Figure 4.2: Boxplot summarizing the translation error statistic for the VIO pipeline when
changing the number of tracked features over consecutive frames. The analyzed number
of tracked features are {150, 125, 100, 75}. The first number is the default setting and
is evaluated on a Laptop and on a UP Board, all other numbers are evaluated on a UP
Board. Errors were computed using the metric described in subsection 4.1.1 for trajectory
segments of length {1,2,5,10,15,20,25,30} m.

4.4 Changing the Sliding Window Size

The non-linear BA is performed over a sliding window containing the latest two
frames and a number of previous keyframes. The default window size is 10, which
means that the number of previous keyframes is eight. In this section the impact
of the window size is analyzed.

The reduction in the number of keyframes has influence on the optimization and the
marginalization. With less keyframes, the number of poses in the “pose block” Λp

in Equation (3.5) is reduced, as every keyframe leads to a pose. Also the number of
corresponding landmark observations in the keyframes is potentially reduced. For
an alternative explanation we can take a closer look at the dimensions of the system
matrix in Equation (3.5). With a reduced number of poses, the dimensions of the
symmetric “pose block” Λp is reduced. Therefore, the number of columns of the
“observation block” Λmp has to be reduced as well. This also results in a reduced
system for marginalization. The resulting decreased optimization times are shown
in Figure 4.3.

Furthermore, a smaller window size reduces the freely adjustable parameters in the
optimization. The solver can then perform more iterations in the given limited
solving time. The increased number of iterations results in a higher convergence
rate, which counteracts the decreased accuracy due to the smaller window size.
Because of this, the translation error does not increase much along the different
window sizes as seen in Figure 4.4.

Chapter 4. Evaluation 14

Figure 4.3: Boxplot summarizing the whole optimization time (optimization and marginal-
ization) for the VIO pipeline when changing number of keyframes in the sliding window.
The analyzed number of keyframes in the window are {8, 6, 4, 2}, which results together
with the latest two frames in a window size of {10, 8, 6, 4}. The first number is the default
setting and is evaluated on a Laptop and on a UP Board, all other numbers are evaluated
on a UP Board. The average numbers of solver iterations for the five different cases are
{6.00, 2.06, 2.69, 3.21, 4.73} iterations.

1 2 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ra

n
s
la

ti
o

n
 E

rr
o

r
[m

]

Trajectory Length [m]

Laptop: default W=10

UP: default W=10

UP: W=8

UP: W=6

UP: W=4

Figure 4.4: Boxplot summarizing the translation error statistic for the VIO pipeline when
changing number of keyframes in the sliding window. The tested number of keyframes in
the window are {8, 6, 4, 2}, which results together with the latest two frames in a window
size of {10, 8, 6, 4}. The first number is the default setting and is evaluated on a Lap-
top and on a UP Board, all other numbers are evaluated on a UP Board. Errors were
computed using the metric described in subsection 4.1.1 for trajectory segments of length
{1, 2, 5, 10, 15, 20, 25, 30} m.

4.5 Setting Features Constant in Optimization

Another method to reduce the number of freely adjustable variables in the opti-
mization is to set the constraints of landmarks observed in the oldest keyframes
in the window to constants. The idea behind this approach is, that the features
corresponding to these landmarks have already been optimized several times. The
constraints of these features are added as residuals, but will not change during the
optimization. The resulting changes in per-frame optimization time and accuracy
can be seen in Figure 4.5 and Figure 4.6, respectively. This approach has almost
no effect on the overall optimization time. The entries in the system matrix stay
the same and hence, the number of factors in the marginalization does not change
either. One can see a significant decrease in accuracy for this approach. The reason

15 4.5. Setting Features Constant in Optimization

is assumed to be the method how VINS-Mono represents the features. They are
not represented as a position in the 3D map but as a single parameter, the inverse
depth. This means, setting the inverse depth constant restricts much more than
setting the feature position constant.

Figure 4.5: Boxplot summarizing the whole optimization time (optimization and marginal-
ization) for the VIO pipeline when setting the feature constraints as constants in the BA
optimization for a number of oldest keyframes in the sliding window. The analyzed num-
bers of oldest keyframes are {0, 2, 4, 6} corresponding to the keyframe position {none, KF
7−8, KF 5−8, KF 3−8}. The default setting is evaluated on a Laptop and a UP Board.
The different number of keyframes, where the feature constraints are constant, is evaluated
on a UP Board. The average numbers of solver iterations for the five different cases are
{6.00, 2.06, 2.56, 2.66, 2.73} iterations.

1 2 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

T
ra

n
s
la

ti
o

n
 E

rr
o

r
[m

]

Trajectory Length [m]

Laptop: default all features

UP: default all features

UP: const features in KF 7-8

UP: const features in KF 5-8

UP: const features in KF 3-8

Figure 4.6: Boxplot summarizing the translation error statistic for the VIO pipeline when
setting the constraints as constants in the BA from the features observed in the oldest
keyframes in the sliding window. The analyzed numbers of oldest keyframes are {0, 2, 4, 6}
corresponding to the keyframe position {none, KF 7−8, KF 5−8, KF 3−8}. The default
setting is evaluated on a Laptop and a UP Board. The different number of keyframes,
where the feature constraints are constant, is evaluated on a UP Board. Errors were
computed using the metric described in subsection 4.1.1 for trajectory segments of length
{1, 2, 5, 10, 15, 20, 25, 30} m.

Chapter 4. Evaluation 16

4.6 Not adding Features of the oldest Keyframes
to the Bundle Adjustment

A similar adaptation as changing the window size is as follows. For a number of
old keyframes in the window we do not add any feature constraints. This is equal
to reducing the optimization to a pose graph optimization for these keyframes.
Due to the implementation of VINS-Mono, the marginalization is not affected by
this change since the system matrix in Equation (3.5) is created independently of
the parameters the optimization is performed on. As shown in Figure 4.7 the per-
frame optimization time decreases only slightly. The translation error increases
only barely, as shown in Figure 4.8. This implies that the constraints from features
do not have as much influence in the older keyframes as they have in the newer
(key-)frames. The reason is, that the older keyframes have already been optimized
several times when they reach the end of the sliding window.

Figure 4.7: Boxplot summarizing the whole optimization time (optimization and marginal-
ization) for the VIO pipeline when ignoring the feature constraints in the BA optimization
in a number of oldest keyframes in the sliding window. The analyzed numbers of oldest
keyframes in which no feature constraints are added are {0, 2, 4, 6} corresponding to the
keyframe position {none, KF 7−8, KF 5−8, KF 3−8}. The default setting is evaluated on
a Laptop and a UP Board. The different number of keyframes where the feature constraints
are ignored are evaluated on a UP Board. The average numbers of solver iterations for the
five different cases are {6.00, 2.06, 2.17, 3.09, 3.10} iterations.

1 2 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ra

n
s
la

ti
o

n
 E

rr
o

r
[m

]

Trajectory Length [m]

Laptop: default all features

UP: default all features

UP: no features if seen in KF 7-8

UP: no features if seen in KF 5-8

UP: no features if seen in KF 3-8

Figure 4.8: Boxplot summarizing the translation error statistic for the VIO pipeline when
ignoring the feature constraints in the BA optimization in a number of oldest keyframes
in the sliding window. The analyzed numbers of oldest keyframes in which no feature
constraints are added are {0, 2, 4, 6} corresponding to the keyframe position {none, KF
7−8, KF 5−8, KF 3−8}. The default setting is evaluated on a Laptop and a UP Board.
The different number of keyframes where the feature constraints are ignored are evaluated
on a UP Board. Errors were computed using the metric described in subsection 4.1.1 for
trajectory segments of length {1, 2, 5, 10, 15, 20, 25, 30} m.

17 4.5. Setting Features Constant in Optimization

4.7 Removing Features from the Bundle Adjust-
ment

We looked for other ways to reduce the number of parameters the optimization is
performed on. A similar but more radical approach as the one described before is
ignoring landmarks, which are observed in at least one of the oldest keyframes in the
sliding window, in all (key-)frames in the BA optimization. This allows the solver to
perform more iterations in the given solving time similar to the approach of reducing
the sliding window size. As in the previous approach, the marginalization is not
affected by this change. The effect on the optimization time is almost negligible, as
shown in Figure 4.9. However, if too many landmarks are ignored, the translation
error increases noticeably, as shown in Figure 4.10. Otherwise, the accuracy is
affected only slightly.

Figure 4.9: Boxplot summarizing the whole optimization time for the VIO pipeline when
ignoring the feature constraints in the BA optimization in all (key-)frames if the fea-
ture has been observed in one of a number of oldest keyframes in the sliding window.
The analyzed numbers of oldest keyframes, in which no feature constraints are added, are
{0, 2, 4, 6} corresponding to the keyframe position {none, KF 7−8, KF 5−8, KF 3−8}.
The default setting is evaluated on a Laptop and a UP Board. The different number of old
keyframes, which decide if a feature constraints, is ignored in all (key-)frames is evaluated
on a UP Board. The average numbers of solver iterations for the five different cases are
{6.00, 2.06, 4.72, 5.37, 6.78} iterations.

1 2 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ra

n
s
la

ti
o

n
 E

rr
o

r
[m

]

Trajectory Length [m]

Laptop: default all features

UP: default all features

UP: no features if seen in KF 7-8

UP: no features if seen in KF 5-8

UP: no features if seen in KF 3-8

Figure 4.10: Boxplot summarizing the translation error statistic for the VIO pipeline when
ignoring the feature constraints in the BA optimization in all (key-)frames if the feature has
been observed in one of a number of oldest keyframes in the sliding window. The analyzed
numbers of oldest keyframes, in which no feature constraints are added, are {0, 2, 4, 6}
corresponding to the keyframe position {none, KF 7−8, KF 5−8, KF 3−8}. The default
setting is evaluated on a Laptop and a UP Board. The different number of old keyframes,
which decide if a feature constraints, is ignored in all (key-)frames is evaluated on a UP
Board. Errors were computed using the metric described in subsection 4.1.1 for trajectory
segments of length {1, 2, 5, 10, 15, 20, 25, 30} m.

Chapter 4. Evaluation 18

4.8 Skipping Marginalization

This evaluations focuses on the marginalization. The effect of ignoring the marginal-
ization fully can be seen in Figure 4.11 and Figure 4.12. We can see that the overall
optimization time is drastically reduced, confirming that the marginalization is re-
sponsible for the increased timing on the UP Board. However, we can also see that
the accuracy is reduced drastically, implying that ignoring the marginalization is
not an option.

Figure 4.11: Boxplot summarizing the whole optimization time (optimization and marginal-
ization) for the VIO pipeline when marginalization is performed compared to no marginal-
ization. The default marginalization is evaluated on a Laptop and on a UP Board and no
marginalization is evaluated on a UP Board. The average numbers of solver iterations for
the three different cases are {6.00, 2.06, 2.30} iterations.

1 2 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
ra

n
s
la

ti
o
n
 E

rr
o
r

[m
]

Trajectory Length [m]

Laptop: default marginalization

UP: default marginalization

UP: no marginalization

Figure 4.12: Boxplot summarizing the translation error statistic for the VIO pipeline when
marginalization is performed compared to no marginalization. The default marginalization
is evaluated on a Laptop and on a UP Board and no marginalization is evaluated on a UP
Board. Errors were computed using the metric described in subsection 4.1.1 for trajectory
segments of length {1, 2, 5, 10, 15, 20, 25, 30} m.

4.9 Removing Features from Marginalization

To reduce the number of parameters in the marginalization the following approach
was analyzed. Features are only marginalized if their corresponding landmarks have
been observed in more than a certain number of keyframes. This reduces the dimen-
sions of the system matrix in Equation (3.5), leading to a reduced marginalization
time as shown in Figure 4.13.

19 4.9. Removing Features from Marginalization

Reducing the parameters in the marginalization has also impact on the prior in
the non-linear BA. A prior is only added for features that have been marginalized,
which implicitly reduces the freely adjustable parameters in the optimization. This
again allows for more iterations in the same solving time. If only landmarks ob-
served in more than two keyframes are marginalized the translation error decreases.
However, if too many landmarks are ignored in the marginalization the absence
of the corresponding prior in the BA optimization leads to increased translation
errors. These effects are shown in Figure 4.14.

Figure 4.13: Boxplot summarizing the whole optimization time (optimization and marginal-
ization) for the VIO pipeline when only marginalize features if their corresponding land-
marks have been observed in a minimum number of (key-)frames in the sliding window.
The analyzed numbers of (key-)frames are {0, 2, 4, 6}. The default setting is evaluated on
a Laptop and a UP Board. The minimum number of (key-)frames a landmark has to be
observed in is evaluated on a UP Board. The average numbers of solver iterations for the
five different cases are {6.00, 2.06, 2.15, 2.15, 2.14} iterations.

1 2 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
ra

n
s
la

ti
o

n
 E

rr
o

r
[m

]

Trajectory Length [m]

Laptop: default marginalization

UP: default marginalization

UP: marginalize if seen in >2 KF

UP: marginalize if seen in >4 KF

UP: marginalize if seen in >6 KF

Figure 4.14: Boxplot summarizing the translation error statistic for the VIO pipeline when
only marginalize features if their corresponding landmarks have been observed in a mini-
mum number of (key-)frames in the sliding window. The analyzed numbers of (key-)frames
are {0, 2, 4, 6}. The default setting is evaluated on a Laptop and a UP Board. The mini-
mum number of (key-)frames a landmark has to be observed in is evaluated on a UP Board.
Errors were computed using the metric described in subsection 4.1.1 for trajectory segments
of length {1, 2, 5, 10, 15, 20, 25, 30} m.

Chapter 4. Evaluation 20

4.10 Conclusion

As mentioned in the beginning of this chapter, the overall optimization time consists
of the time to solve the BA optimization and the time needed for the marginaliza-
tion.
A first setting to reduce the overall optimization time is to limit the number of
tracked features.
The maximal time the solver can spend for the BA optimization is fixed and in
most of the cases the termination criteria of the optimization. Therefore, reducing
the number of parameters the optimization is performed on does not decrease the
optimization time but increases the number of iterations the optimizer can perform
in the given solving time, which results in an increased accuracy.
The best way to decrease the number of parameters, the BA optimization has to
optimize, while still achieving a reasonable accuracy is the approach presented in
section 4.7.
The best trade off between time and accuracy for marginalization achieved the
approach in which only landmarks are marginalized which were observed in more
than a certain number of keyframes described in section 4.9.
Based on these insights from the evaluation, we build our proposed approach, pre-
sented in the next chapter.

Chapter 5

Approach

As described in the evaluation, the overall optimization time consists of the time to
solve the BA optimization and the time needed for the marginalization. The run-
time for the BA optimization is limited, but the accuracy can be affected depending
on the optimization settings. The marginalization time, on the other hand, depends
on the number of features to be marginalized.

To achieve real-time performance for our VIO pipeline, the total optimization time
has to be below 100 milliseconds as our system runs with a refresh rate of 10Hz.
Based on the evaluation in chapter 4, we propose an approach which fulfills this
real-time requirement.

Our approach reduces the number of tracked features nfeatures tracked and combines
the optimization- and marginalization-settings which lead to the best trade off be-
tween time and accuracy. In the optimization we ignore landmarks which were
observed in at least one of a certain number of old keyframes noldest keyframes. In
the marginalization we do not marginalize landmarks which are observed in less
than a certain number of (key-)frames nobserved keyframes.

In summary, the proposed changes are:

• Reduce the number of tracked features from 150 down to nfeatures tracked.

• Ignoring feature constraints in the BA optimization, if the corresponding land-
mark has been observed in at least one of the noldest keyframes oldest keyframes.

• Only marginalize out features that have been observed in more than nobserved keyframes

(key-)frames.

21

Chapter 5. Approach 22

Chapter 6

Experimental Results

In this chapter we evaluate the performance of the proposed approach, described
in chapter 4. Two experiments are performed: In the first experiment, we compare
our approach running on three different platforms, two of them computationally
restricted. The platforms are a laptop computer, a UP-Board, and the onboard
computer of an AscTec Hummingbird1. Additionally, we also run the default im-
plementation of VINS-Mono on the laptop. This first experiment was performed on
all sequences of the EuRoC dataset [6]. In the second experiment our approach is
deployed on a AscTec Neo2, a real UAV.

6.1 Experimental Settings

6.1.1 First Experiment

Hardware Platforms

The tests are performed on a Laptop with an Intel i7-6600U CPU running at up
to 3.4 GHz, on a UP Board with an Intel Atom x5-Z8350 CPU running at up to
1.92 GHz, and on the onboard computer of an AscTec Hummingbird with an Intel
Atom E3845 CPU running at 1.92GHz.

Metrics

We measure the same two metrics (accuracy and per-frame optimization time) as
described in the evaluation section 4.1. However, the metrics are measured over all
the sequences combined. In addition for each individual sequence, the whole tra-
jectory is aligned to the ground truth using a sim3 trajectory alignment according
to the method proposed in [18]. Then the RMSE position error over the aligned
trajectory is calculated. We also highlight the maximal per-frame optimization time
for each sequence to ensure that real-time performance is fulfilled.

6.1.2 Second Experiment

Hardware Platforms

In the second experiment, the proposed pipeline has been deployed on an AscTec
Neo, equipped with an Intel NUC which has much more computational power than
required. Due to time limits the pipeline could not be deployed on a UAV with a
more restricted onboard computer. However the results in subsection 6.3.1 show

1 http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-hummingbird/
2 http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-neo/

23

Chapter 6. Experimental Results 24

that a similar accuracy on a less powerful platform can be assumed.

The VIO pose estimation uses camera and IMU measurements obtained by the VI-
Sensor described in [19]. Instead of the front-looking camera an additional down-
looking camera has been used. The calibration between the additional camera and
the IMU was performed using the kalibr toolbox [20] from Autonomous System
Lab (ASL)3. In addition, the proposed VIO pose estimation has been fused with
the onboard IMU of the UAV using an EKF Multi Sensor Fusion (MSF) framework
from ASL4 described in [21]. kalibr toolbox was again used for the calibration be-
tween the onboard IMU and the camera frame.

6.2 Experiments

Both experiments are evaluated with the parameters of our approach set to the
following:

• nfeatures tracked = 120 features.

• noldest keyframes = 4 keyframes.

• nobserved keyframes = 6 (key-)frames.

6.2.1 First Experiment

We evaluate our proposed approach using the EuRoC micro aerial vehicle dataset
[6]. This dataset provides stereo WVGA monochrome images at 20Hz and tempo-
rally synchronized IMU measurements at 200Hz from a micro-aerial vehicle manu-
ally piloted around three different indoor environments. Within each environment
three qualitative difficulties are provided. For example, Machine Hall 01 is “easy”
containing rather slow motions, while Machine Hall 05 is much more challenging,
introducing fast motions, poor illuminations, etc. Each sequence provides a ground
truth trajectory given by a Leica MS50 laser tracker for the Machine Hall environ-
ment and by a Vicon motion capture system for the other two environments. Only
the images from the left camera are used for the evaluation.
All sequences of the dataset are used to show the performance of our approach
in as many different scenarios as possible. As comparison the default VINS-Mono
implementation running on the Laptop is also evaluated.

6.2.2 Second Experiment

Due to time limits the test were limited to hover at the current position. The pose
estimations of the MSF were recorded together with ground truth provided by a
Vicon motion capture system.

6.3 Results

6.3.1 First Experiment

First and most important, with our approach the optimization time is below 100
milliseconds in all sequences, compared to the default VINS-Mono running on the
UP-Board. The results are listed in Table 6.2. We can see that the accuracy of

3 https://github.com/ethz-asl/kalibr
4 https://github.com/ethz-asl/ethzasl msf

25 6.3. Results

our approach has decreased compared to the default version of VINS-Mono run-
ning on the laptop, best noticeable in the median in the box plot in Figure 6.2.
Furthermore, one can see that the accuracy of our approach on the Laptop and
the UP-Board is very similar. The only difference on the UP-Board is the in-
crease in computational time, as shown in Figure 6.1. This indicates the robust-
ness of our algorithm, meaning the algorithm does not run at the limit on the
UP Board. On the AscTec Hummingbird the accuracy is slightly worse. We as-
sume the reason is the older CPU generation which lacks of the Intel Burst func-
tion for short-time overclocking of the CPU. The RMSE in Table 6.1 shows that
our approach even outperforms the default VINS-Mono in the “easy” sequences
of the Machine Hall and V1 environment. Whereas the default VINS-Mono im-
plementation running on the laptop achieves higher accuracy in the difficult se-
quences. During the fast movements of these sequences the feature tracker is not
as accurate as during slow movements. We assume that during fast movements,
more constraints from the observed features improve the accuracy. During slow
movements the feature tracking is very accurate and running the BA optimization
with only a reduced number of feature constraints is sufficient enough, allowing
for more iteration in the limited solving time. This results in a higher accuracy.

Figure 6.1: Boxplot summarizing the whole optimization time (optimization and marginal-
ization) for the VIO pipeline over all sequences of the EuRoC dataset. The default VINS-
Mono implementation running on a laptop and on a UP Board is compared with our own
approach running on a laptop, a UP-Board and on the onboard computer of an AscTec
Hummingbird UAV.

1 2 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

T
ra

n
s
la

ti
o
n
 E

rr
o
r

[m
]

Trajectory Length [m]

Laptop - default

Laptop - own approach

UP - default

UP - own approach

AscTec - own approach

Figure 6.2: Boxplot summarizing the translation error statistic for the VIO pipeline over
all sequences of the EuRoC dataset. The default VINS-Mono implementation running on
a laptop and on a UP Board is compared with our own approach running on a laptop, a
UP-Board and on the onboard computer of an AscTec Hummingbird UAV. Errors were
computed using the metric described in subsection 4.1.1 for trajectory segments of length
{1, 2, 5, 10, 15, 20, 25, 30} m.

Chapter 6. Experimental Results 26

Laptop
default

VINS-Mono

UP Board
default

VINS-Mono
Laptop UP Board

AscTec
Hummingbird

MH 01 - easy 0.427 0.284 0.139 0.140 0.174
MH 02 - easy 0.238 0.375 0.179 0.180 0.149
MH 03 - medium 0.211 0.246 0.175 0.177 0.144
MH 04 - difficult 0.223 0.365 0.276 0.262 0.232
MH 05 - difficult 0.351 0.361 0.564 0.548 0.557
V1 01 - easy 0.142 0.116 0.066 0.066 0.095
V1 02 - medium 0.063 0.062 0.126 0.110 0.085
V1 03 - difficult 0.091 0.147 0.126 0.127 0.110
V2 01 - easy 0.066 0.087 0.067 0.067 0.074
V2 02 - medium 0.090 0.087 0.093 0.094 0.095
V2 03 - difficult 0.123 0.187 0.172 0.172 0.167

Table 6.1: Absolute translation errors (RMSE) in meters for all sequences of the EuRoC
dataset. The default VINS-Mono implementation running on a laptop is compared with
our own approach running on a laptop, a UP-Board and on the onboard computer of an
AscTec Hummingbird UAV. Errors have been computed after the estimated trajectories
were aligned with the ground truth trajectory using the method proposed in [18].

Laptop
default

VINS-Mono

UP Board
default

VINS-Mono
Laptop UP Board

AscTec
Hummingbird

MH 01 - easy 86.1 148.2 35.9 97.3 94.6
MH 02 - easy 99.9 148.8 40.9 95.9 94.0
MH 03 - medium 70.3 145.8 41.2 99.7 89.6
MH 04 - difficult 97.9 137.4 47.7 96.0 91.0
MH 05 - difficult 80.6 135.2 46.2 88.6 89.6
V1 01 - easy 117.2 152.9 45.4 95.5 91.5
V1 02 - medium 65.9 125.6 42.8 95.6 80.8
V1 03 - difficult 66.7 135.7 44.2 87.6 88.5
V2 01 - easy 71.2 135.5 38.9 88.9 91.6
V2 02 - medium 66.7 118.8 39.7 97.4 87.6
V2 03 - difficult 65.1 129.5 50.7 87.1 80.4

Table 6.2: Maximal optimization time in milliseconds for all sequences of the EuRoC
dataset. The default VINS-Mono implementation running on a laptop is compared with
our own approach running on a laptop, a UP-Board and on the onboard computer of an
AscTec Hummingbird UAV.

6.3.2 Second Experiment

Since the UAV is supposed to hover, the relative pose should stay at zero for x, y,
and z. We can see that in all axis, there exist a noticeable error in the state
estimate of the MSF filter, shown in Figure 6.3, Figure 6.4, and Figure 6.5. We
assume that the main reason for this behavior is that the filter parameters were
not optimized. The test was performed with default filter values and due to time
restrictions, no parameter tuning for VINS-Mono and/or our approach could be
done. The calibration between the down-looking camera and the on-board IMU
has also some potential for improvement.

27 6.3. Results

0 5 10 15 20 25 30 35 40 45 50 55

-0.2

0

0.2

0 5 10 15 20 25 30 35 40 45 50 55

-0.2

0

0.2

0 5 10 15 20 25 30 35 40 45 50 55
-1

0

1

Figure 6.3: Relative pose estimation, while the UAV is hovering, in the x axis of the MSF
filter and the Vicon ground truth, and the difference between them.

0 5 10 15 20 25 30 35 40 45 50 55

-0.2

0

0.2

0 5 10 15 20 25 30 35 40 45 50 55

-0.2

0

0.2

0 5 10 15 20 25 30 35 40 45 50 55
-0.5

0

0.5

Figure 6.4: Relative pose estimation, while the UAV is hovering, in the y axis of the MSF
filter and the Vicon ground truth, and the difference between them.

Chapter 6. Experimental Results 28

0 5 10 15 20 25 30 35 40 45 50 55

-0.2

0

0.2

0 5 10 15 20 25 30 35 40 45 50 55

-0.2

0

0.2

0 5 10 15 20 25 30 35 40 45 50 55
-0.2

0

0.2

Figure 6.5: Relative pose estimation, while the UAV is hovering, in the z axis of the MSF
filter and the Vicon ground truth, and the difference between them.

Chapter 7

Conclusion and Outlook

7.1 Conclusion

In this semester project, an existing open source monocular keyframe based VIO
pipeline was adapted to achieve accurate pose estimation, while having as little com-
putational demand as possible. Our approach is based on VINS-Mono [5], which
was chosen after a comparison of the publicly available monocular VIO pipelines.

An extensive evaluation of the default VINS-Mono pipeline parameters was per-
formed to determine their influence on the accuracy and the per-frame optimiza-
tion time. Based on these evaluation an approach was proposed, which ignores any
features in the BA optimization, if the corresponding landmark has been observed
in one of the oldest four keyframes. This means, the oldest four keyframes do not
provide any feature constraints. This reduces the number of freely adjustable pa-
rameters in the optimization. In addition, only features that have been observed
in at least six keyframes in the window are marginalized out. Finally, in order to
have a save margin in the optimization time, the number of tracked features was
reduced to 120.

The proposed adaption were then extensively tested on all eleven sequences of the
EuRoC dataset. The results show that our approach is less accurate than the de-
fault implementation of VINS-Mono, as expected, but is very consistent over the
three tested platforms. This includes two computational limited single board com-
puters and a much stronger Laptop. The similar results proof the robustness of our
algorithm. Furthermore, the test shows that even the outliers in the per-frame op-
timization time do not exceed the 100 millisecond, ensuring real-time applicability.
The RMSE errors show that our approach is most suitable for slower movements.
Whereas with faster movements, the reduced number of features in the optimization
becomes noticeable. This suggests, that as one might expect, there is no free lunch
in visual state estimation.

We also tested the proposed VIO pipeline with a MSF framework on a UAV, which
succeeded to hover. However, there was noticeable incertitude in the movement.
Due to time limits, this effects could not be further investigated. However we as-
sume, that most of this incertitude can be eliminated by properly tuning the MSF
parameters and performing a more accurate calibration.

We want to note that in our first approach we only ignored the feature constraints in
the oldest four keyframes of the sliding window, as described in section 4.6. Which

29

Chapter 7. Conclusion and Outlook 30

is equivalent to perform only a pose graph optimization for the oldest keyframes.
However, we had to reduce the number of tracked features down to 80 to achieve
real-time performance in all of the tested sequences described in subsection 6.2.1.
Otherwise, there were always a few outliers in the total per-frame optimization time
above 100 milliseconds. Reducing the tracked feature that much reduced also the
accuracy significantly. This led us to the approach of ignoring all feature constraints
in the BA optimization if a feature has been observed in one of the oldest keyframes.

7.2 Outlook

The evaluation is done on the different summands of the BA optimization, but this
does not cover all of the adjustable parameters. Some of the parameters that have
not been analyzed in this work are the following:

• Minimum distance between two features.

• Keyframe selection threshold (parallax and minimum detected features).

• Solver types in Google’s ceres solver [17].

These parameters might have a significant influence on the accuracy or the per-
frame optimization time.

The ROS implementation of the default VINS-Mono and our adaption contains
buffers. However, when using as real-time VIO pipeline, it would be better to drop
frames if the optimization can’t catch up with the feature tracker. Otherwise, the
BA optimization may be performed on old data. Hence, one could create a “live”
version of our VIO pipeline, which does not use buffers.

Ignoring features seen in the oldest keyframes is a quite radical approach for reducing
the number of feature constraints. A more sophisticated heuristic for reducing the
number of feature constraints may lead to an even better time accuracy trade off.

Bibliography

[1] H. Strasdat, J. M. M. Montiel, and A. Davison, “Scale Drift-Aware Large Scale
Monocular {SLAM},” in Robotics: Science and Systems {VI}. Robotics:
Science and Systems Foundation, jun 2010.

[2] P. Schmuck and M. Chli, “Multi-UAV collaborative monocular SLAM,” in 2017
IEEE International Conference on Robotics and Automation (ICRA), 2017, pp.
3863–3870.

[3] M. Karrer and M. Chli, “Towards Globally Consistent Visual-Inertial Col-
laborative SLAM,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2018.

[4] I. Alzugaray, L. Teixeira, and M. Chli, Short-term UAV Path-Planning with
Monocular-Inertial SLAM in the Loop. ETH-Zürich, 2017.

[5] T. Qin, P. Li, and S. Shen, “VINS-Mono: A Robust and Versatile Monocular
Visual-Inertial State Estimator,” CoRR, vol. abs/1708.0, pp. 1–17, 2017.

[6] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W.
Achtelik, and R. Siegwart, “The EuRoC micro aerial vehicle datasets,” The
International Journal of Robotics Research, 2016.

[7] J. Delmerico and D. Scaramuzza, “A Benchmark Comparison of Monocular
Visual-Inertial Odometry Algorithms for Flying Robots,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2018.

[8] A. I. Mourikis and S. I. Roumeliotis, “A Multi-State Constraint Kalman Filter
for Vision-aided Inertial Navigation,” in Proceedings 2007 IEEE International
Conference on Robotics and Automation, apr 2007, pp. 3565–3572.

[9] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual – inertial odometry using nonlinear optimization,”
The International Journal of Robotics Research, vol. 34, no. 3, pp. 314–334,
2015.

[10] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial
odometry using a direct EKF-based approach,” in 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), sep 2015, pp.
298–304.

[11] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, “SVO:
Semi-Direct Visual Odometry for Monocular , Wide-angle, and Muti-Camera
Systems,” Nccr, pp. 1–17, 2016.

[12] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert,
“iSAM2: Incremental smoothing and mapping using the Bayes tree,” The In-
ternational Journal of Robotics Research, vol. 31, no. 2, pp. 216–235, 2014.

31

Bibliography 32

[13] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold Prein-
tegration for Real-Time Visual-Inertial Odometry,” IEEE Transactions on
Robotics, vol. 33, no. 1, pp. 1–21, 2017.

[14] F. Dellaert, “Factor Graphs and GTSAM: A Hands-on Introduction,” GT
RIM, Tech. Rep. GT-RIM-CP&R-2012-002, sep 2012.

[15] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique
with an Application to Stereo Vision,” in Proceedings of the 7th International
Joint Conference on Artificial Intelligence - Volume 2, ser. IJCAI’81. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1981, pp. 674–679.

[16] G. Sibley, L. Matthies, and G. Sukhatme, “Sliding window filter with applica-
tion to planetary landing,” J. Field Robotics, vol. 27, pp. 587–608, 2010.

[17] S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.org.

[18] S. Umeyama, “Least-squares estimation of transformation parameters between
two point patterns,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 13, no. 4, pp. 376–380, apr 1991.

[19] J. Nikolic, J. Rehder, M. Burri, P. Gohl, S. Leutenegger, P. T. Furgale, and
R. Siegwart, “A synchronized visual-inertial sensor system with FPGA pre-
processing for accurate real-time SLAM,” in Robotics and Automation (ICRA),
2014 IEEE International Conference on. IEEE, 2014, pp. 431–437.

[20] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial calibra-
tion for multi-sensor systems,” in 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, nov 2013, pp. 1280–1286.

[21] S. Lynen, M. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A Robust and
Modular Multi-Sensor Fusion Approach Applied to MAV Navigation,” in Proc.
of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), 2013.

http://ceres-solver.org

	Abstract
	Introduction
	Related Work
	A Benchmark Comparison
	MSCKF
	OKVIS
	ROVIO
	SVO+GTSAM
	VINS-Mono
	Summary

	System overview
	Measurement Preprocessing
	Visual Inertial Odometry
	Optimization
	Marginalization

	Relocalization and Pose Graph Optimization
	Implementation

	Evaluation
	Metrics
	Accuracy
	Per-Frame Optimization Time

	Implementation of the Schur Complement
	Reducing the Number of Tracked Features
	Changing the Sliding Window Size
	Setting Features Constant in Optimization
	Not adding Features of the oldest Keyframes to the Bundle Adjustment
	Removing Features from the Bundle Adjustment
	Skipping Marginalization
	Removing Features from Marginalization
	Conclusion

	Approach
	Experimental Results
	Experimental Settings
	First Experiment
	Second Experiment

	Experiments
	First Experiment
	Second Experiment

	Results
	First Experiment
	Second Experiment

	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography

